数组
Go语言的数组是一种值类型,虽然数组的元素可以被修改,但是数组本身的赋值和函数传参都是以整体复制的方式处理的。
定义方式
var a [3]int // 定义长度为3的int型数组, 元素全部为0
var b = [...]int{1, 2, 3} // 定义长度为3的int型数组, 元素为 1, 2, 3
var c = [...]int{2: 3, 1: 2} // 定义长度为3的int型数组, 元素为 0, 2, 3
var d = [...]int{1, 2, 4: 5, 6} // 定义长度为6的int型数组, 元素为 1, 2, 0, 0, 5, 6
第一种方式是定义一个数组变量的最基本的方式,数组的长度明确指定,数组中的每个元素都以零值初始化。
第二种方式定义数组,可以在定义的时候顺序指定全部元素的初始化值,数组的长度根据初始化元素的数目自动计算。
第三种方式是以索引的方式来初始化数组的元素,因此元素的初始化值出现顺序比较随意。这种初始化方式和map[int]Type类型的初始化语法类似。数组的长度以出现的最大的索引为准,没有明确初始化的元素依然用0值初始化。
第四种方式是混合了第二种和第三种的初始化方式,前面两个元素采用顺序初始化,第三第四个元素零值初始化,第五个元素通过索引初始化,最后一个元素跟在前面的第五个元素之后采用顺序初始化。
我们还可以定义一个空的数组:
var d [0]int // 定义一个长度为0的数组
var e = [0]int{} // 定义一个长度为0的数组
var f = [...]int{} // 定义一个长度为0的数组
长度为0的数组在内存中并不占用空间。空数组虽然很少直接使用,但是可以用于强调某种特有类型的操作时避免分配额外的内存空间,比如用于管道的同步操作:
c1 := make(chan [0]int)
go func() {
fmt.Println("c1")
c1 <- [0]int{}
}()
<-c1
在这里,我们并不关心管道中传输数据的真实类型,其中管道接收和发送操作只是用于消息的同步。对于这种场景,我们用空数组来作为管道类型可以减少管道元素赋值时的开销。当然一般更倾向于用无类型的匿名结构体代替:
c2 := make(chan struct{})
go func() {
fmt.Println("c2")
c2 <- struct{}{} // struct{}部分是类型, {}表示对应的结构体值
}()
<-c2
数组的遍历
我们可以用for循环来迭代数组。下面常见的几种方式都可以用来遍历数组:
//索引遍历
for i := range a {
fmt.Printf("a[%d]: %d\n", i, a[i])
}
//索引+值
for i, v := range b {
fmt.Printf("b[%d]: %d\n", i, v)
}
//普通的for循环
for i := 0; i < len(c); i++ {
fmt.Printf("c[%d]: %d\n", i, c[i])
}
用for range方式迭代的性能可能会更好一些,因为这种迭代可以保证不会出现数组越界的情形,每轮迭代对数组元素的访问时可以省去对下标越界的判断。
数组的内存结构
Go语言中数组是值语义。一个数组变量即表示整个数组,它并不是隐式的指向第一个元素的指针(比如C语言的数组),而是一个完整的值。
当一个数组变量被赋值或者被传递的时候,实际上会复制整个数组。如果数组较大的话,数组的赋值也会有较大的开销。为了避免复制数组带来的开销,可以传递一个指向数组的指针,但是数组指针并不是数组。(虽然它几乎可以直接当成数组使用)
var a = [...]int{1, 2, 3} // a 是一个数组
var b = &a // b 是指向数组的指针
fmt.Println(a[0], a[1]) // 打印数组的前2个元素
fmt.Println(b[0], b[1]) // 通过数组指针访问数组元素的方式和数组类似
for i, v := range b { // 通过数组指针迭代数组的元素
fmt.Println(i, v)
}
其中b是指向a数组的指针,但是通过b访问数组中元素的写法和a类似的。
其他数组
数组不仅仅可以用于数值类型,还可以定义字符串数组、结构体数组、函数数组、接口数组、管道数组等等:
// 字符串数组
var s1 = [2]string{"hello", "world"}
var s2 = [...]string{"你好", "世界"}
var s3 = [...]string{1: "世界", 0: "你好", }
// 结构体数组
var line1 [2]image.Point
var line2 = [...]image.Point{image.Point{X: 0, Y: 0}, image.Point{X: 1, Y: 1}}
var line3 = [...]image.Point{{0, 0}, {1, 1}}
// 图像解码器数组
var decoder1 [2]func(io.Reader) (image.Image, error)
var decoder2 = [...]func(io.Reader) (image.Image, error){
png.Decode,
jpeg.Decode,
}
// 接口数组
var unknown1 [2]interface{}
var unknown2 = [...]interface{}{123, "你好"}
// 管道数组
var chanList = [2]chan int{}
简而言之,一切相同的数据结构都可以放在一起集合为一个数组。
字符串
字符串通常是用来包含人类可读的文本数据。在go语言中,字符串的元素是不可修改的,本质上是一个只读的字节数组.
Go语言的源代码要求是UTF8编码,导致Go源代码中出现的字符串面值常量一般也是UTF8编码的。源代码中的文本字符串通常被解释为采用UTF8编码的Unicode码点(rune)序列。
我们也可以用字符串表示GBK等非UTF8编码的数据,不过这种时候将字符串看作是一个只读的二进制数组更准确,因为for range等语法并不能支持非UTF8编码的字符串的遍历。
底层结构
Go语言字符串的底层结构在reflect.StringHeader中定义:
type StringHeader struct {
Data uintptr
Len int
}
字符串结构由两个信息组成:第一个是字符串指向的底层字节数组,第二个是字符串的字节的长度。字符串其实是一个结构体,因此字符串的赋值操作也就是reflect.StringHeader结构体的复制过程,并不会涉及底层字节数组的复制。可以将字符串数组看作一个结构体数组。
支持切片
字符串虽然不是切片,但是支持切片操作,不同位置的切片底层也访问的同一块内存数据(因为字符串是只读的,相同的字符串面值常量通常是对应同一个字符串常量):
s := "hello, world"
hello := s[:5]
world := s[7:]
s1 := "hello, world"[:5]
s2 := "hello, world"[7:]
字符串和数组类似,内置的len函数返回字符串的长度。
遍历,打印与转换
提到Go字符串时,我们一般都会假设字符串对应的是一个合法的UTF8编码的字符序列。可以用内置的print调试函数或fmt.Print函数直接打印,也可以用for range循环直接遍历UTF8解码后的Unicode码点值。
for i, r := range "Hello, 世界" {
fmt.Printf("%d\t%q\t%d\n", i, r, r)
}
Go语言除了for range语法对UTF8字符串提供了特殊支持外,还对字符串和[]rune类型的相互转换提供了特殊的支持。
fmt.Printf("%#v\n", []rune("世界")) // []int32{19990, 30028}
fmt.Printf("%#v\n", string([]rune{'世', '界'})) // 世界
从上面代码的输出结果来看,我们可以发现[]rune其实是[]int32类型,这里的rune只是int32类型的别名,并不是重新定义的类型。
字符串相关的强制类型转换主要涉及到[]byte和[]rune两种类型。每个转换都可能隐含重新分配内存的代价,最坏的情况下它们的运算时间复杂度都是O(n)。不过字符串和[]rune的转换要更为特殊一些,因为一般这种强制类型转换要求两个类型的底层内存结构要尽量一致,显然它们底层对应的[]byte和[]int32类型是完全不同的内部布局,因此这种转换可能隐含重新分配内存的操作。
内置的转换操作大致如下
![上传中…]()
常用的包工具
标准库中有四个包对字符串处理尤为重要:bytes、strings、strconv和unicode包。strings包提供了许多如字符串的查询、替换、比较、截断、拆分和合并等功能。
bytes包也提供了很多类似功能的函数,但是针对和字符串有着相同结构的[]byte类型。因为字符串是只读的,因此逐步构建字符串会导致很多分配和复制。在这种情况下,使用bytes.Buffer类型将会更有效,稍后我们将展示。
strconv包提供了布尔型、整型数、浮点数和对应字符串的相互转换,还提供了双引号转义相关的转换。
unicode包提供了IsDigit、IsLetter、IsUpper和IsLower等类似功能,它们用于给字符分类。每个函数有一个单一的rune类型的参数,然后返回一个布尔值。而像ToUpper和ToLower之类的转换函数将用于rune字符的大小写转换。所有的这些函数都是遵循Unicode标准定义的字母、数字等分类规范。strings包也有类似的函数,它们是ToUpper和ToLower,将原始字符串的每个字符都做相应的转换,然后返回新的字符串。
切片
简单地说,切片就是一种简化版的动态数组。因为动态数组的长度是不固定,切片的长度自然也就不能是类型的组成部分了。数组虽然有适用它们的地方,但是数组的类型和操作都不够灵活,因此在Go代码中数组使用的并不多。而切片则使用得相当广泛
底层结构
我们先看看切片的结构定义,reflect.SliceHeader:
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
可以看出切片的开头部分和Go字符串是一样的,但是切片多了一个Cap成员表示切片指向的内存空间的最大容量(对应元素的个数,而不是字节数)。
需要注意的是,切片的容量取决于底层数组的后续空间。
如:x := []int{2,3,5,7,11}和y := x[1:3]两个切片对应的内存结构。
切片的定义
var (
a []int // nil切片, 和 nil 相等, 一般用来表示一个不存在的切片
b = []int{} // 空切片, 和 nil 不相等, 一般用来表示一个空的集合
c = []int{1, 2, 3} // 有3个元素的切片, len和cap都为3
d = c[:2] // 有2个元素的切片, len为2, cap为3
e = c[0:2:cap(c)] // 有2个元素的切片, len为2, cap为3
f = c[:0] // 有0个元素的切片, len为0, cap为3
g = make([]int, 3) // 有3个元素的切片, len和cap都为3
h = make([]int, 2, 3) // 有2个元素的切片, len为2, cap为3
i = make([]int, 0, 3) // 有0个元素的切片, len为0, cap为3
)
和数组一样,内置的len函数返回切片中有效元素的长度,内置的cap函数返回切片容量大小,容量必须大于或等于切片的长度。也可以通过reflect.SliceHeader结构访问切片的信息(只是为了说明切片的结构,并不是推荐的做法)。
切片可以和nil进行比较,只有当切片底层数据指针为空时切片本身为nil,这时候切片的长度和容量信息将是无效的。如果有切片的底层数据指针为空,但是长度和容量不为0的情况,那么说明切片本身已经被损坏了(比如直接通过reflect.SliceHeader或unsafe包对切片作了不正确的修改)。
切片的遍历
for i := range a {
fmt.Printf("a[%d]: %d\n", i, a[i])
}
for i, v := range b {
fmt.Printf("b[%d]: %d\n", i, v)
}
for i := 0; i < len(c); i++ {
fmt.Printf("c[%d]: %d\n", i, c[i])
}
其实除了遍历之外,只要是切片的底层数据指针、长度和容量没有发生变化的话,对切片的遍历、元素的读取和修改都和数组是一样的。在对切片本身赋值或参数传递时,和数组指针的操作方式类似,只是复制切片头信息(reflect.SliceHeader),并不会复制底层的数据。对于类型,和数组的最大不同是,切片的类型和长度信息无关,只要是相同类型元素构成的切片均对应相同的切片类型。
切片元素的添加
尾部追加N个元素
var a []int
a = append(a, 1) // 追加1个元素
a = append(a, 1, 2, 3) // 追加多个元素, 手写解包方式
a = append(a, []int{1,2,3}...) // 追加一个切片, 切片需要解包
要注意的是,在容量不足的情况下,append的操作会导致重新分配内存,可能导致巨大的内存分配和复制数据代价。
即使容量足够,依然需要用append函数的返回值来更新切片本身,因为新切片的长度已经发生了变化。
开头添加元素:
var a = []int{1,2,3}
a = append([]int{0}, a...) // 在开头添加1个元素
a = append([]int{-3,-2,-1}, a...) // 在开头添加1个切片
在开头一般都会导致内存的重新分配,而且会导致已有的元素全部复制1次。因此,从切片的开头添加元素的性能一般要比从尾部追加元素的性能差很多。
中间插入元素
由于append函数返回新的切片,也就是它支持链式操作。
var a []int
a = append(a[:i], append([]int{x}, a[i:]...)...) // 在第i个位置插入x
a = append(a[:i], append([]int{1,2,3}, a[i:]...)...) // 在第i个位置插入切片
每个添加操作中的第二个append调用都会创建一个临时切片,并将a[i:]的内容复制到新创建的切片中,然后将临时创建的切片再追加到a[:i]。
可以用copy和append组合可以避免创建中间的临时切片,同样是完成添加元素的操作:
a = append(a, 0) // 切片扩展1个空间
copy(a[i+1:], a[i:]) // a[i:]向后移动1个位置
a[i] = x // 设置新添加的元素
第一句append用于扩展切片的长度,为要插入的元素留出空间。第二句copy操作将要插入位置开始之后的元素向后挪动一个位置。第三句真实地将新添加的元素赋值到对应的位置。操作语句虽然冗长了一点,但是相比前面的方法,可以减少中间创建的临时切片。
用copy和append组合也可以实现在中间位置插入多个元素(也就是插入一个切片):
a = append(a, x...) // 为x切片扩展足够的空间
copy(a[i+len(x):], a[i:]) // a[i:]向后移动len(x)个位置
copy(a[i:], x) // 复制新添加的切片
稍显不足的是,在第一句扩展切片容量的时候,扩展空间部分的元素复制是没有必要的。没有专门的内置函数用于扩展切片的容量,append本质是用于追加元素而不是扩展容量,扩展切片容量只是append的一个副作用。
切片元素的删除
从尾部删除
直接使用切片操作
a = []int{1, 2, 3}
a = a[:len(a)-1] // 删除尾部1个元素
a = a[:len(a)-N] // 删除尾部N个元素
从开头位置删除
删除开头的元素可以直接移动数据指针:
同样也是切片操作
a = []int{1, 2, 3}
a = a[1:] // 删除开头1个元素
a = a[N:] // 删除开头N个元素
删除开头的元素也可以不移动数据指针,但是将后面的数据向开头移动。可以用append原地完成(所谓原地完成是指在原有的切片数据对应的内存区间内完成,不会导致内存空间结构的变化):
a = []int{1, 2, 3}
a = append(a[:0], a[1:]...) // 删除开头1个元素
a = append(a[:0], a[N:]...) // 删除开头N个元素
也可以用copy完成删除开头的元素:
a = []int{1, 2, 3}
a = a[:copy(a, a[1:])] // 删除开头1个元素
a = a[:copy(a, a[N:])] // 删除开头N个元素
从中间位置删除
对于删除中间的元素,需要对剩余的元素进行一次整体挪动,同样可以用append或copy原地完成:
a = []int{1, 2, 3, ...}
a = append(a[:i], a[i+1:]...) // 删除中间1个元素
a = append(a[:i], a[i+N:]...) // 删除中间N个元素
a = a[:i+copy(a[i:], a[i+1:])] // 删除中间1个元素
a = a[:i+copy(a[i:], a[i+N:])] // 删除中间N个元素
切片内存技巧
在本节开头的数组部分我们提到过有类似[0]int的空数组,空数组一般很少用到。但是对于切片来说,len为0但是cap容量不为0的切片则是非常有用的特性。当然,如果len和cap都为0的话,则变成一个真正的空切片,虽然它并不是一个nil值的切片。在判断一个切片是否为空时,一般通过len获取切片的长度来判断,一般很少将切片和nil值做直接的比较。
类似的根据过滤条件原地删除切片元素的算法都可以采用类似的方式处理(因为是删除操作不会出现内存不足的情形):
只需将判断条件换一下就行
func Filter(s []byte, fn func(x byte) bool) []byte {
b := s[:0]
for _, x := range s {
if !fn(x) {
b = append(b, x)
}
}
return b
}
切片高效操作的要点是要降低内存分配的次数,尽量保证append操作不会超出cap的容量,降低触发内存分配的次数和每次分配内存大小。