python链家网二手房异步IO爬虫,使用asyncio、aiohttp和aiomysql
很多小伙伴初学python时都会学习到爬虫,刚入门时会使用requests、urllib这些同步的库进行单线程爬虫,速度是比较慢的,后学会用scrapy框架进行爬虫,速度很快,原因是scrapy是基于twisted多线程异步IO框架。
本例使用的asyncio也是一个异步IO框架,在python3.5以后加入了协程的关键字async,能够将协程和生成器区分开来,更加方便使用协程。
经过测试,平均1秒可以爬取30个详情页信息
可以使用asyncio.Semaphore来控制并发数,达到限速的效果
# -*- coding: utf-8 -*- """ :author: KK :url: http://github.com/PythonerKK :copyright: © 2019 KK <[email protected]> """ import asyncio import re import aiohttp from pyquery import PyQuery import aiomysql from lxml import etree pool = '' #sem = asyncio.Semaphore(4) 用来控制并发数,不指定会全速运行 stop = False headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36' } MAX_PAGE = 10 TABLE_NAME = 'data' #数据表名 city = 'zh' #城市简写 url = 'https://{}.lianjia.com/ershoufang/pg{}/' #url地址拼接 urls = [] #所有页的url列表 links_detail = set() #爬取中的详情页链接的集合 crawled_links_detail = set() #爬取完成的链接集合,方便去重 async def fetch(url, session): ''' aiohttp获取网页源码 ''' # async with sem: try: async with session.get(url, headers=headers, verify_ssl=False) as resp: if resp.status in [200, 201]: data = await resp.text() return data except Exception as e: print(e) def extract_links(source): ''' 提取出详情页的链接 ''' pq = PyQuery(source) for link in pq.items("a"): _url = link.attr("href") if _url and re.match('https://.*?/\d+.html', _url) and _url.find('{}.lianjia.com'.format(city)): links_detail.add(_url) print(links_detail) def extract_elements(source): ''' 提取出详情页里面的详情内容 ''' try: dom = etree.HTML(source) id = dom.xpath('//link[@rel="canonical"]/@href')[0] title = dom.xpath('//title/text()')[0] price = dom.xpath('//span[@class="unitPriceValue"]/text()')[0] information = dict(re.compile('<li><span class="label">(.*?)</span>(.*?)</li>').findall(source)) information.update(title=title, price=price, url=id) print(information) asyncio.ensure_future(save_to_database(information, pool=pool)) except Exception as e: print('解析详情页出错!') pass async def save_to_database(information, pool): ''' 使用异步IO方式保存数据到mysql中 注:如果不存在数据表,则创建对应的表 ''' COLstr = '' # 列的字段 ROWstr = '' # 行字段 ColumnStyle = ' VARCHAR(255)' for key in information.keys(): COLstr = COLstr + ' ' + key + ColumnStyle + ',' ROWstr = (ROWstr + '"%s"' + ',') % (information[key]) # 异步IO方式插入数据库 async with pool.acquire() as conn: async with conn.cursor() as cur: try: await cur.execute("SELECT * FROM %s" % (TABLE_NAME)) await cur.execute("INSERT INTO %s VALUES (%s)"%(TABLE_NAME, ROWstr[:-1])) print('插入数据成功') except aiomysql.Error as e: await cur.execute("CREATE TABLE %s (%s)" % (TABLE_NAME, COLstr[:-1])) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: print('mysql error %d: %s' % (e.args[0], e.args[1])) async def handle_elements(link, session): ''' 获取详情页的内容并解析 ''' print('开始获取: {}'.format(link)) source = await fetch(link, session) #添加到已爬取的集合中 crawled_links_detail.add(link) extract_elements(source) async def consumer(): ''' 消耗未爬取的链接 ''' async with aiohttp.ClientSession() as session: while not stop: if len(urls) != 0: _url = urls.pop() source = await fetch(_url, session) print(_url) extract_links(source) if len(links_detail) == 0: print('目前没有待爬取的链接') await asyncio.sleep(2) continue link = links_detail.pop() if link not in crawled_links_detail: asyncio.ensure_future(handle_elements(link, session)) async def main(loop): global pool pool = await aiomysql.create_pool(host='127.0.0.1', port=3306, user='root', password='xxxxxx', db='aiomysql_lianjia', loop=loop, charset='utf8', autocommit=True) for i in range(1, MAX_PAGE): urls.append(url.format(city, str(i))) print('爬取总页数:{} 任务开始...'.format(str(MAX_PAGE))) asyncio.ensure_future(consumer()) if __name__ == '__main__': loop = asyncio.get_event_loop() asyncio.ensure_future(main(loop)) loop.run_forever()